Near-Optimal Parameters for Tikhonov and Other Regularization Methods

نویسنده

  • Dianne P. O'Leary
چکیده

Choosing the regularization parameter for an ill-posed problem is an art based on good heuristics and prior knowledge of the noise in the observations. In this work, we propose choosing the parameter, without a priori information, by approximately minimizing the distance between the true solution to the discrete problem and the family of regularized solutions. We demonstrate the usefulness of this approach for Tikhonov regularization and for an alternate family of solutions. Further, we prove convergence of the regularization parameter to zero as the standard deviation of the noise goes to zero.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Optimal Spectral Filtering and Error Estimation for Solving Ill-Posed Problems

We consider regularization methods for numerical solution of linear illposed problems, in particular, image deblurring, when the singular value decomposition (SVD) of the operator is available. We assume that the noise-free problem satisfies the discrete Picard condition and define the Picard parameter, the index beyond which the data, expressed in the coordinate system of the SVD, are dominate...

متن کامل

A numerical approach for solving a nonlinear inverse diusion problem by Tikhonov regularization

In this paper, we propose an algorithm for numerical solving an inverse non-linear diusion problem. In additional, the least-squares method is adopted tond the solution. To regularize the resultant ill-conditioned linear system ofequations, we apply the Tikhonov regularization method to obtain the stablenumerical approximation to the solution. Some numerical experiments con-rm the utility of th...

متن کامل

Nonstationary Iterated Thresholding Algorithms for Image Deblurring

We propose iterative thresholding algorithms based on the iterated Tikhonov method for image deblurring problems. Our method is similar in idea to the modified linearized Bregman algorithm (MLBA) so is easy to implement. In order to obtain good restorations, MLBA requires an accurate estimate of the regularization parameter α which is hard to get in real applications. Based on previous results ...

متن کامل

روش‌های تجزیه مقادیر منفرد منقطع و تیخونوف تعمیم‌یافته در پایدارسازی مسئله انتقال به سمت پائین

The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...

متن کامل

On fractional Tikhonov regularization

It is well known that Tikhonov regularization in standard form may determine approximate solutions that are too smooth, i.e., the approximate solution may lack many details that the desired exact solution might possess. Two different approaches, both referred to as fractional Tikhonov methods have been introduced to remedy this shortcoming. This paper investigates the convergence properties of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2001